Подпишись и читай
самые интересные
статьи первым!

Вектор соединяющий начальную точку траектории с конечной. Траектория, длина пути, вектор перемещения







Проекцию считают положительной если (а х >0) от проекции начала вектора к проекции его конца нужно идти по направлению оси. В противном случае проекция вектора (а х 0) от проекции начала вектора к проекции его конца нужно идти по направлению оси. В противном случае проекция вектора (а х 0) от проекции начала вектора к проекции его конца нужно идти по направлению оси. В противном случае проекция вектора (а х 0) от проекции начала вектора к проекции его конца нужно идти по направлению оси. В противном случае проекция вектора (а х 0) от проекции начала вектора к проекции его конца нужно идти по направлению оси. В противном случае проекция вектора (а х
Путь или перемещение мы оплачиваем при поездке в такси? Мяч упал с высоты 3 м, отскочил от пола и был пойман на высоте 1 м. Найти путь и перемещение мяча. Велосипедист движется по окружности с радиусом 30 м. Чему равны путь и перемещение велосипедиста за половину оборота? За полный оборот?


§ § 2,3 ответить на вопросы в конце параграфа. Упр. 3, стр.15 На рис. показана траектория АВСД движения точки из А в Д. Найти координаты точек начала и конца движения, пройденный путь, перемещение, проекцию перемещения на оси координат. Решить задачу (по желанию):Катер прошел на северо-восток 2 км, а затем в северном направлении еще 1 км. Найти геометрическим построением перемещение (S) и его модуль (S).

Вопрос 1.Радиус-вектор.Вектор перемещения.

- радиус-вектор - это вектор, проведенный от точки отсчета О к рассматриваемой точке М.

- перемещение (или изменение радиус-вектора) – это вектор, соединяющий начало и конец траектории.

радиус-вектор в прямоугольной системе декартовых координат:

Где -называют координатами точки.

Вопрос 2.Скорость перемещения. Средняя и мгновенная скорости.

Скорость перемещения (вектор)-показывает, как изменяется перемещение в единицу времени.

Средняя: Мгновенная:

Мгновенная скорость всегда направлена по касательной к траектории,

а средняя – совпадает с вектором перемещения.

Проекция: Модуль:

Вопрос 3.Путь.Его связь с модулем скорости.

S путь – это длина траектории (скалярная величина, > 0).

S-площадь фигуры, ограниченной кривой v(t) и прямыми t 1 и t 2 .

Вопрос 4.Ускорение.Модуль ускорения.

Ускорение - по смыслу – показывает, как изменяется скорость в единицу времени.

Проекция: Модуль: Среднее значение:

Вопрос 5.Неравномерное движение точки по криволинейной траектории.

Если точка движется по криволинейной траектории, то целесообразно разложить ускорение на составляющие, одна из которых направлена по касательной и называется тангенциальным или касательным ускорением , а другая направлена по нормали к касательной, т.е. по радиусу кривизны, к центру кривизны и называется нормальным ускорением.

Характеризует изменение скорости по направлению, – по величине.

Где r - радиус кривизны.

У точки, движущейся по криволинейной траектории, всегда есть нормальное ускорение, а тангенциальное – только тогда, когда скорость изменяется по величине.

(2, 3)Тема 2. КИНЕМАТИЧНСКИЕ УРАВНЕНИЯ ДВИЖЕНИЯ.

Вопрос 1.Получить кинематические уравнения движения r(t) и v(t).

Два дифференциальных и связанных с ними двух интегральных векторных уравнениях:

и - кинематические уравнения равнопеременного точки при .

Вопрос 2. Получить кинематические уравнения движения x(t),y(t),v x (t) и v y (t), для брошенного тела.

Вопрос 3. Получить кинемат. уравнения движения x(t),y(t),v x (t) и v y (t), для тела, брошенного под углом.

Вопрос 4. Получить уравнение движения для тела, брошенного под углом.

Тема 3. КИНЕМАТИКА ВРАЩЕНИЯ.

Вопрос 1.Кинематические характеристики вращательного движения.

угловое перемещение - угол поворота радиус-вектора.

угловая скорость - показывает, как изменяется угол поворота радиус-вектора.

угловое ускорение - показывает, как изменяется угловая скорость за единицу времени.

Вопрос 2. Связь между линейными и угловыми характеристиками движения точки

Вопрос 3.Получите кинематическое уравнения w (t) и ф (t).

То кинематические уравнения после интегрирования примут более простой вид: - кин. уравнения равноускор.(+) и равнозамедл.(-) вращательного движения.

(4, 5, 6) Тема 4. КИНЕМАТИКА АТТ.

Вопрос 1.Определение АТТ. Поступательные и вращательные движения АТТ.

АТТ называется тело, деформациями которого можно пренебречь в условиях данной задачи.

Все движения АТТ можно разложить на поступательное и вращательное, относительно некоторой мгновенной оси. Поступательное движение – это движение, при котором прямая, проведенная через любые две точки тела, перемещается параллельно самой себе. При поступательном движении все точки тела совершают одинаковые перемещения.Вращательное движение – это движение, при котором все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения.

В качестве кинематического уравнения вращательного движения АТТ достаточно знать уравнение j (t) для угла поворота радиус-вектора, проведенного от оси вращения к какой-либо точке тела (если ось неподвижна). Т.е., принципиально кинематические уравнения движения для точки и АТТ не отличаются.

Тема 5. ЗАКОНЫ НЬЮТОНА.

Тема 6. ЗАКОН СОХРАНЕНИЯ ИМПУЛЬСА.

Тема 7. РАБОТА. МОЩНОСТЬ. ЭНЕРГИЯ.

Вопрос 7. Законы сохранения применительно к абсолютно упругому удару двух шаров.

Абсолютно упругий удар – это такой удар, при котором сохраняется кинетическая энергия всей системы.

Тема 10. СИЛОВЫЕ ПОЛЯ

Вопрос 3. Сокращение длины.

l 0 – длина стержня в системе, относительно которой он покоится (в нашем случае в К ), l – длина этого отрезка в системе, относительно которой он движется (К¢ ). т.к. и найдем связь между l и l 0 : .

Таким образом, из СТО следует, что размеры движущихся тел должны сокращаться в направлении их движения, но реального сокращения нет, т.к. все ИСО равноправны.

Вопрос 2.Идеальный газ

Простейшей моделью реальных газов является идеальный газ . С ма кро скопической точки зрения – это газ, для которого выполняются газовые законы (pV = const, p/T = const, V/T = const ). С ми кро скопической точки зрения – это газ, для которого можно пренебречь: 1) взаимодействием молекул между собой и 2) собственным объемом молекул газа по сравнению с объемом сосуда, в котором находится газ.

Уравнение, связывающее между собой параметры состояния, называется уравнением состояния газа. Одно из простейших уравнений состояния - это

( ; ; ) уравнение Менделеева – Клапейрона.

(n – концентрация, k – постоянная Больцмана) - уравнение состояния идеального газа в другой форме.

Тема 15. ОСНОВНЫЕ ПОНЯТИЯ ТЕРМОДИНАМИКИ

Вопрос 1. Основные понятия. Обратимые и необратимые процессы.

Обратимый процесс - это такой процесс перехода системы из состояния А в состояние В , при котором возможен обратный переход от В к А через те же промежуточные состояния и при этом в окружающих телах не происходит никаких изменений. Система называется изолированной , если она не обменивается энергией с окружающей средой. На графике состояния обозначаются точками, а процессы – линиями.

Величины, которые зависят только от состояния системы и не зависят от процессов, посредством которых система пришла в данное состояние, называются функциями состояния . Величины, значения которых в данном состоянии зависят от предшествующих процессов, называются функциями процессов - это теплота Q и работа A ,их изменение обозначают часто как dQ, dA или . (d - греческая буква - дельта)

Работа и теплота – это две формы передачи энергии от одних тел к другим. При совершении работы меняется относительное расположение тел или частей тела. Передача энергии в виде теплоты осуществляется при контакте тел – за счет теплового движения молекул.

К внутренней энергии относят: 1)кинетическую энергию теплового движения молекул (но не кинетическую энергию всей системы в целом), 2)потенциальную энергию взаимодействия молекул между собой, 3)кинетическую и потенциальную энергию колебательного движения атомов в молекуле, 4)энергию связи электронов с ядром в атоме, 5)энергию взаимодействия протонов и нейтронов внутри ядра атома. Эти энергии по величине очень сильно отличаются друг от друга, например, энергия теплового движения молекул при 300 К ~ 0,04 эВ, энергия связи электрона в атоме ~ 20-50 эВ, а энергия взаимодействия нуклонов в ядре ~10 МэВ. Поэтому эти взаимодействия рассматривают по отдельности.

Внутренняя энергия идеального газа – это кинетическая энергия теплового движения его молекул. Она зависит только от температуры газа. Ее изменение имеет одинаковое выражение для любых процессов в идеальных газах и зависит только от начальной и конечной температур газа. - внутренняя энергия идеального газа.

Тема 16.

Вопрос 1. Энтропия

II начало термодинамики, как и I начало, является обобщением большого числа опытных фактов и имеет несколько формулировок.

Введем сначала понятие «энтропия», которое играет ключевую роль в термодинамике. Энтропия - S – одна из важнейших термодинамических функций, характеризующая состояние или возможные изменения состояния вещества – это многогранное понятие.

1)Энтропия – это функция состояния . Введение таких величин ценно тем, что при любых процессах изменение функции состояния одинаково, поэтому сложный реальный процесс можно заменить «выдуманными» простыми процессами. Например, реальный процесс перехода системы из состояния А в состояние В (см. рис.) можно заменить на два процесса: изохорический А®С и изобарический С®В.

Энтропия определяется следующим образом.

Для обратимых процессов в идеальных газах можно получить формулы для вычисления энтропии в различных процессах. Выразим dQ из I начала и подставим в выражение для dS .

общее выражение для изменения энтропии в обратимых процессах.

Интегрируя, получим выражения для изменения энтропии в различных изопроцессах в идеальных газах.

Вопрос 2,3,4.изобарический, изохорический, изотермический

Во всех расчетах энтропии имеет значение только разность энтропий конечного и начального состояний системы

2)Энтропия мера рассеяния энергии.

запишем I начало термодинамики для обратимого изотермического процесса, учитывая, что dQ=T×dS и выразим работу
термодинамическая функция называется свободной энергией величина называется связанной энергией
Из формул можно сделать вывод, что в работу можно перевести не весь запас внутренней энергии системы U . Часть энергии TS нельзя перевести в работу, она рассеивается в окружающей среде. И эта «связанная» энергия тем больше, чем больше энтропия системы. Следовательно, энтропию можно назвать мерой рассеяния энергии.

3)Энтропия – мера беспорядка системы

Введем понятие термодинамической вероятности.Пусть мы имеет ящик, разделенный на n отсеков. В ящике по всем отсекам свободно перемещается N молекул. В первом отсеке окажется N 1 молекул, во втором отсеке N 2 молекул,…,

в n -ом отсеке - N n молекул. Число способов w , которыми можно распределить N молекул по n состояниям (отсекам) называется термодинамической вероятностью . Иначе говоря, термодинамическая вероятность показывает, сколькими микро распределениями можно получить данное макро распределение Она вычисляется по формуле:

Для примера вычисления w рассмотрим систему, состоящую из трех молекул 1, 2 и 3, которые свободно перемещаются в ящике с тремя отсеками.

В данном примере N = 3 (три молекулы) и n = 3 (три отсека), молекулы считаются различимыми.

В первом случае макрораспределение – это равномерное распределение молекул по отсекам, оно может осуществиться 6-ью микрораспределениями. Вероятность такого распределение самая большая. Равномерное распределение можно назвать «беспорядком» (по аналогии с разбросанными вещами в комнате) В последнем случае, когда молекулы собираются только в одном отсеке вероятность наименьшая. Проще говоря, из повседневных наблюдений мы знаем, что молекулы воздуха более или менее равномерно распределяются в помещении, и практически совершенно невероятно, чтобы все молекулы собрались в одном углу комнаты. Однако теоретически такая вероятность существует.

Больцман постулировал, что энтропия прямо пропорциональна натуральному логарифму термодинамической вероятности:

Следовательно, энтропию можно назвать мерой беспорядка системы.

Вопрос 6.Теперь мы можем сформулировать II начало термодинамики .

1)При любых процессах, происходящих в теплоизолированной системе, энтропия системы не может убывать:
Знак «=» относится к обратимым процессам, знак «>» - к необратимым (реальным) процессам. В незамкнутых системах энтропия может меняться любым образом.
Иначе говоря, в замкнутых реальных системах возможны только те процессы, при которых энтропия возрастает. Энтропия связана с термодинамической вероятностью, следовательно, ее увеличение в замкнутых системах означает рост «беспорядка» системы, т.е. молекулы стремятся прийти в одинаковое энергетическое состояние и с течением времени все молекулы должны иметь одинаковую энергию. Отсюда был сделан вывод о стремлении нашей Вселенной к тепловой смерти. «Энтропия мира стремится к максимуму» (Клаузиус). Так как законы термодинамики выведены на основе человеческого опыта в масштабах Земли, то вопрос об их применимости в масштабах Вселенной остается открытым
3) «Невозможно построить вечный двигатель второго рода, т.е. такую периодически действующую машину, действие которой состояло бы только в поднятии груза и охлаждении теплового резервуара» (Томсон, Планк)
Обязательно должно быть еще тело, которому «придется» отдать часть теплоты. Просто отнимать тепло от некоторого тела и превращать его в работу невозможно потому, что такой процесс сопровождается уменьшением энтропии нагревателя. Следовательно, нужно еще одно тело – холодильник, энтропия которого будет увеличиваться, чтобы DS = 0 . Т.е. у нагревателя забирается теплота, за счет этого может быть совершена работа, но часть теплоты «теряется», т.е. передается холодильнику.

Вопрос 7. КРУГОВЫЕ ПРОЦЕССЫ (ЦИКЛЫ)

Круговым процессом или циклом называется такой процесс, при котором система, пройдя ряд состояний, возвращается в исходное состояние. Если процесс осуществляется по часовой стрелке, он называется прямым , против часовой стрелки –обратным . Т.к. внутренняя энергия является функцией состояния, то в круговом процессе

Устройство, в котором затрачивается теплота, а получается работа, называется тепловой машиной . Все тепловые машины работают по прямому циклу, состоящему из различных процессов. Устройство, работающее по обратному циклу, называется холодильной машиной . В холодильной машине затрачивается работа, а в результате от холодного тела отнимается теплота, т.е. происходит дополнительное охлаждение этого тела.

Рассмотрим цикл Карно для идеальной тепловой машины. Предполагается, что рабочее тело – идеальный газ, трение отсутствует. Этот цикл, состоящий из двух изотерм и двух адиабат, реально не осуществим, но он сыграл огромную роль в развитии термодинамики и теплотехники и позволил проанализировать коэффициент полезного действия (КПД) тепловых машин.

1-2 изотермическое расширение сообщаемое тепло идет на работу газа
2-3 адиабатическое расширение газ совершает работу за счет внутренней энергии
3-4 изотермическое сжатие внешние силы сжимают газ, передавая теплоту окружающей среде
4-1 адиабатическое сжатие над газом совершается работа, его внутренняя энергия увеличивается
( - из уравнений адиабат) полная работа за цикл; на графике полная А равна площади, охватываемой кривой 1-2-3-4-1

Таким образом, за цикл газу было сообщено Q 1 теплоты, холодильнику передано Q 2 теплоты и получена работа А .

Из полученного выражения следует, что: 1) КПД всегда меньше единицы,

2)КПД не зависит от рода рабочего тела, а только от температуры нагревателя и холодильника, 3)чтобы повысить КПД нужно увеличить температуру нагревателя и уменьшить температуру холодильника. В современных двигателях в качестве нагревателя используются горючие смеси - бензин, керосин, дизельное топливо и др., имеющие определенные температуры горения. Холодильником служит чаще всего окружающая среда. Следовательно, реально увеличить КПД можно только за счет уменьшения трения в различных узлах двигателя и машины.

Тема 18.Вопрос 1.АГРЕГАТНЫЕ СОСТОЯНИЯ ВЕЩЕСТВА

Молекулы представляют собой сложные системы электрически заряженных частиц. Основная масса молекулы и весь ее положительный заряд сосредоточены в ядрах, их размеры порядка 10 - 15 - 10 - 14 м, а размер самой молекулы, включая электронную оболочку, примерно 10 - 10 м. В целом молекула электрически нейтральна. Электрическое поле ее зарядов в основном сосредоточено внутри молекулы и за ее пределами резко убывает. При взаимодействии двух молекул одновременно проявляются и силы притяжения и силы отталкивания, они по-разному зависят от расстояния между молекулами (см рис.- пунктирные линии). Одновременное действие межмолекулярных сил дает зависимость силы F от расстояния r между молекулами, характерную и для двух молекул, и атомов, и ионов (сплошная кривая). На больших расстояния молекулы практически не взаимодействуют, на очень малых расстояния преобладают силы отталкивания. На расстояниях, равных нескольким диаметрам молекул действуют силы притяжения. Расстояние r o между центрами двух молекул, на котором F=0, - это положение равновесия. Так как сила связана с потенциальной энергией F=-dE пот /dr , то интегрирование даст зависимость потенциальной энергии от r (потенциальная кривая). Равновесное положение соответствует минимуму потенциальной энергии -U min . Для различных молекул вид потенциальной кривой аналогичен, но числовые значения r o и U min различны и определяются природой данных молекул.

Кроме потенциальной, молекула обладает еще и кинетической энергией. Минимальная потенциальная энергия у каждого сорта молекул своя, а кинетическая энергия зависит от температуры вещества (Е кин ~ кТ ). В зависимости от соотношения между этими энергиями данное вещество может находиться в том или ином агрегатном состоянии. Например, вода может быть в твердом состоянии (лед), в жидком и в виде пара.

У инертных газов U min невелики, поэтому они переходят в жидкое состояние при очень низких температурах. У металлов большие величины U min поэтому они находятся в твердом состоянии вплоть до температуры плавления – это могут быть сотни и тысячи градусов.

Вопрос 3.

Смачивание приводит к тому, что на стенках сосуда жидкость как бы «ползет» по стенке, и ее поверхность искривляется. В широком сосуде это искривление практически незаметно. В узких трубках – капиллярах – этот эффект можно наблюдать визуально. За счет сил поверхностного натяжения создается дополнительное (по сравнению с атмосферным) давление , направленное к центру кривизны поверхности жидкости.

Дополнительное давление вблизи искривленной поверхности жидкости D р приводит к подъему (при смачивании) или опусканию (при несмачивании) жидкости в капиллярах.

При равновесии дополнительное давление равно гидростатическому давлению столбика жидкости. Из формулы Лапласа для капилляра круглого сечения Dp = 2s /R , гидростатическое давление р = r g h . Приравнивая = р , найдем h .

Из формулы видно, что чем меньше радиус капилляра, тем выше подъем (или опускание) жидкости.

Явление капиллярности чрезвычайно распространено в природе и технике. Например, проникновение влаги из почвы в растения осуществляется посредством подъема ее по капиллярным каналам. К капиллярным явлениям относится также такое явление, как движение влаги по стенам помещения, приводящее к сырости. Очень большую роль капиллярность играет при добыче нефти. Размеры пор в породе, содержащей нефть, чрезвычайно малы. Если добываемая нефть окажется несмачивающей по отношению к породе, то она закупорит канальца, и извлечь ее будет очень трудно. Добавляя к жидкости некоторые вещества даже в очень малом количестве, можно существенно изменить ее поверхностное натяжение. Такие вещества называются поверхностно-активными веществами. радиус-вектор в прямоугольной системе декартовых координат:

Где -называют координатами точки.

Определение 1

Траектория движения тела – это линия, которая была описана материальной точкой при перемещении из одной точки в другую с течением времени.

Существуют несколько видов движений и траекторий твердого тела:

  • поступательное;
  • вращательное, то есть движение по окружности;
  • плоское, то есть перемещение по плоскости;
  • сферическое, характеризующее движение по поверхности сферы;
  • свободное, иначе говоря, произвольное.

Рисунок 1 . Определение точки при помощи координат x = x (t) , y = y (t) , z = z (t) и радиус-вектора r → (t) , r 0 → является радиус-вектором точки в начальный момент времени

Положение материальной точки в пространстве в любой момент времени может быть задано при помощи закона движения, определенный координатным способом, через зависимость координат от времени x = x (t) , y = y (t) , z = z (t) или от времени радиус-вектора r → = r → (t) , проведенного из начала координат к заданной точке. Это показано на рисунке 1 .

Определение 2

S → = ∆ r 12 → = r 2 → - r 1 → – направленный отрезок прямой, соединяющий начальную с конечной точкой траектории тела. Значение пройденного пути l равняется длине траектории, пройденной телом за определенный промежуток времени t .

Рисунок 2 . Пройденный путь l и вектор перемещения s → при криволинейном движении тела, a и b – начальная и конечная точки пути, принятые в физике

Определение 3

По рисунку 2 видно, что при движении тела по криволинейной траектории модуль вектора перемещения всегда меньше пройденного пути.

Путь – скалярная величина. Считается числом.

Сумма двух последовательных перемещений из точки 1 в точку 2 и из токи 2 в точку 3 является перемещением из точки 1 в точку 3 , как показано на рисунке 3 .

Рисунок 3 . Сумма двух последовательных перемещений ∆ r → 13 = ∆ r → 12 + ∆ r → 23 = r → 2 - r → 1 + r → 3 - r → 2 = r → 3 - r → 1

Когда радиус-вектор материальной точки в определенный момент времени t является r → (t) , в момент t + ∆ t есть r → (t + ∆ t) , тогда ее перемещение ∆ r → за время ∆ t равняется ∆ r → = r → (t + ∆ t) - r → (t) .

Перемещение ∆ r → считается функцией времени t: ∆ r → = ∆ r → (t) .

Пример 1

По условию дан движущийся самолет, представленный на рисунке 4 . Определить вид траектории точки М.

Рисунок 4

Решение

Необходимо рассмотреть систему отсчета I , называемую «Самолет» с траекторией движения точки М виде окружности.

Будет задана система отсчета II «Земля» с траекторией движения имеющейся точки М по спирали.

Пример 2

Дана материальная точка, которая совершает движение из А в В. Значение радиуса окружности R = 1 м. Произвести нахождение S , ∆ r → .

Решение

Во время движения из А в В точка проходит путь, который равен половине окружности, записываемой формулой:

Подставляем числовые значения и получаем:

S = 3 , 14 · 1 м = 3 , 14 м.

Перемещением ∆ r → в физике считается вектор, соединяющий начальное положение материальной точки с конечным, то есть А с В.

Подставив числовые значения, вычислим:

∆ r → = 2 R = 2 · 1 = 2 м.

Ответ: S = 3 , 14 м; ∆ r → = 2 м.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Кинематическое описание движения мат. Точки

(Мат. точка, система отсчета, перемещение, траектория, путь, скорость, ускорение.)

Кинематические уравнения равнопеременного движения

Кинематика занимается описанием движения, отвлекаясь от его причин. Для описания движения можно выбирать различные системы отсчета. В различных системах отсчета движение одного и того же тела выглядит по-разному. В кинематике при выборе системы отсчета руководствуются лишь соображениями целесообразности, определяющимися конкретными условиями. Так, при рассмотрении движения тел на Земле естественно связать систему отсчета с Землей, что мы и будем делать. При рассмотрении движения самой Земли систему отсчета удобнее связывать с Солнцем и т. п. Никаких принципиальных преимуществ одной системы отсчета по сравнению с другой в кинематике указать нельзя. Все системы отсчета кинематически эквивалентны. Только в динамике, изучающей движение в связи с силами, действующими на движущиеся тела, выявляются принципиальные преимущества определенной системы отсчета или, точнее, определенного класса систем отсчета. Так,

Материальной точкой наз-ся макроскопическое тело, размеры которого настолько малы, что в рассматриваемом движении их можно не принимать во внимание и считать, что все вещество тела как бы сосредоточено в одной геометрической точке.

Материальных точек в природе не существует. Материальная точка есть абстракция, идеализированный образ реально существующих тел. Можно или нельзя то или иное тело при изучении какого либо движения принять за материальную точку - это зависит не столько от самого тела, сколько от характера движения, а также от содержания вопросов, на которые мы хотим получить ответ. Абсолютные размеры тела при этом не играют роли. Важны относительные размеры, т. е. отношения размеров тела к некоторым расстояниям, характерным для рассматриваемого движения. Например, Землю при рассмотрении ее орбитального движения вокруг Солнца с громадной точностью можно принять за материальную точку. Характерной длиной здесь является радиус земной орбиты R ~ 1,5 Ю8 км. Он очень велик по сравнению с радиусом земного шара г жл:6,4 103 км. Благодаря этому при орбитальном движении все точки Земли движутся практически одинаково. Поэтому достаточно рассмотреть движение только одной точки, например центра Земли, и считать, что все вещество Земли как бы сосредоточено в этой геометрической точке. Такая идеализация сильно упрощает задачу об орбитальном движении Земли, сохраняя, однако, все существенные черты этого движения. Но эта идеализация не годится при рассмотрении вращения Земли вокруг собственной оси, ибо бессмысленно говорить о вращении

геометрической точки вокруг оси, проходящей через эту точку.

Телом отсчета наз-ся положение материальной точки в пространстве в данный момент времени определяется по отношению к какому-либо другому телу . С ним связывается

Система отсчета – совокупность системы координат и часов, связанных с телом, по отношению к которому изучается движение каких-нибудь других материальных точек.

Перемещением наз-ся вектор, соединяющий начальную и конечную точки траектории.

Траекторией движения материальной точки называется линия, описываемая этой точкой в пространстве. В зависимости от формы траектории движение может быть прямолинейным и криволинейным.

Материальная точка – тело, обладающее массой, бесконечно малых размеров (размерами которого в данной задаче можно пренебречь).

Механическое движение является простейшей формой движения материи и состоит в перемещении тел или их частей друг относительно друга в пространстве с течением времени.

Системой отсчета называют совокупность тела отсчета и связанной с ним системы координат.

Траектория линия, описываемая материальной точкой (или телом) при движении относительно выбранной системы отсчета.

Радиусом-вектором некоторой точки называется вектор, проведеный из начала координат в эту точку.

Перемещение – вектор соединяющий начальную и конечную точку траектории.

Длина пути s длина участка траектории AB, пройденного точкой за данный промежуток времени: ∆s = ∆s(t) – скалярная функция времени.

Вопрос 2

Скорость – векторная величина, которая определяет быстроту и направление движения в данный момент времени.

Средняя скорость – отношение перемещения к тому промежутку времени,за которое это перемещение произошло.

Мгновенная скорость скорость в данный момент времени.

Ускорение характеристика быстроты изменения скорости по величине и направлению.

Среднее ускорение отношение изменения скорости к тому промежутку времени, за которое это изменение произошло.(изменение скорости в единицу времени).

Мгновенное ускорение ускорение в данный момент времени.

Движение при котором тело движется с постоянной по величине и направлению скоростью наз. равномерным прямолинейным движением.

При прямолинейном движении направление скорости и ускорения совпадают.

При движении тела по криволинейной траектории ускорение имеет две составляющие. Ат-тангенциальное. Аn-нормальное. Ат-направлена параллельно(или антипараллельно) скорости и отвечает за изменение скорости по величине. Аn-направлено перпендикулярно скорости (центростремительное ускорение) и отвечает за изменение скорости по направлению.

Вопрос 3

Средней угловой скоростью называется отношение углового перемещения к тому промежутку времени за который это перемещение было совершено.

Направление угловой скорости совпадает с направлением углового перемещения, т.е.направление вдоль оси вращения согласно правилу правого винта.

Средней угловым ускорением называется отношение изменения угловой скорости к тому промежутку времени за который это изменение произошло.

При ускоренном вращении угловое ускорение совпадает по направлению с угловой скоростью,а при замедленном напрвлено в противоположном направлении угловой скорости.

Вопрос 4

Инерциальная система отсчета система отсчета, относительно которой свободная материальная точка, не подверженная воздействию других тел , движется равномерно и прямолинейно (по инерции). Инерциальных систем может существовать бесконечное множество. Любая система отсчета, движущаяся относительно некоторой инерциальной системы равномерно и прямолинейно будет также инерциальной.

Неинерциальная система отсчета – система отсчета, движущаяся относительно инерциальной с ускорением.

Масса тела (m)– мера количества вещества – физическая величина , определяющая инерциальные и гравитационные свойства тела. Единица массы  кг (килограмм).

Сила (F) – векторная величина, являющаяся мерой механического воздействия на тело со стороны других тел или полей, в результате которого тело приобретает ускорение (динамическое проявление сил) или деформируется (статическое проявление сил).

Импульс тела (p = mv) – произведение массы тела на его скорость.

Закон сохранения импульса

Замкнутой механической системой наз. система тел в которой тела взаимодействуют друг с другом,но не взаимодействуют с другими телами.

В замкнутой системе взаимодействующих тел при любых взаимодействиях полный импульс системы (векторная сумма импульсов всех тел) есть величина постоянная.

Силы природы

1) Сила тяжести mg-направлена всегда вертикально вниз

2) Сила реакции опоры N-направлена всегда перпендикулярно поверхности на которой находится тело.

3) Сила упругости Fупр=-kx

x-величина деформации

k-коэффициент упругости.

4) Сила трения Fтр

Сила трения скольжения Fтр=MN M-коэф трения. N-сила реакции опоры.

Сила трения покоя – всегда равна приложенной внешней горизонтальной силе.

Сила трения качения – имеет очень маленькии коэф трения.

Сила трения всегда направлена в сторону противоположную движению(скорости).

Первый закон Ньютона (закон инерции)

Всякое тело находится в состоянии покоя или равномерного прямолинейного движения , пока воздействие со стороны других тел не заставит его изменить это состояние.

Второй закон Ньютона (основной закон динамики)

Ускорение, приобретаемое телом, прямо пропорционально вызывающей его силе, совпадает с нею по направлению и обратно пропорционально массе тела.

или сила, как производная импульса :

,

Принцип суперпозиции. Равнодействующая.

Если на тело действует одновременно несколько сил, то это эквивалентно действию одной силы,которая равна векторной сумме всех сил, действующих на тело.

Эта сила наз. равнодействующей силой.

Третий закон Ньютона (з-н парного взаимодействия м.т.)

Силы, с которыми действуют друг на друга тела,

всегда равны по величине и направлены противоположно

Включайся в дискуссию
Читайте также
Правописание не и ни Не пишется раздельно с
Что говорят знаки препинания о вашем характере?
Гадание по руне одина. Руны. Мантическое значение руны Одина