Подпишись и читай
самые интересные
статьи первым!

Экзотические вселенные. Вселенная имеет форму бублика? Откуда появляется темная материя

В стародавние времена люди думали» что 3емля плоская и стоит на трех китах, затем выяснилось, что наша ойкумена круглая и, если плыть все время на запад, то через некоторое время вернешься в исходную точку с востока. Похожим образом изменялись и воззрения на Вселенную. В свое время Ньютон полагал, что пространство плоское и бесконечное. Эйнштейн разрешил нашему Миру быть не только безграничным и кривым, но и замкнутым. Новейшие данные, полученные в процессе исследования реликтового излучения, свидетельствуют о том, что Вселенная вполне может быть замкнута сама на себя. Получается, что если все время лететь от 3емли, то в какой-то момент начнешь к ней приближаться и в конце концов вернешься назад, обойдя всю Вселенную и совершив кругосветное путешествие, подобно тому, как один из кораблей Магеллана, обогнув весь земной шар, приплыл в испанский порт Санлукар-де-Баррамеда.

Гипотеза о том, что наша Вселенная родилась в результате Большого взрыва, сейчас считается общепринятой. Материя вначале была очень горячей, плотной и быстро расширялась. Затем температура Вселенной понизилась до нескольких тысяч градусов. Вещество в этот момент состояло из электронов, протонов и альфа-частиц (ядер гелия), то есть представляло собой сильно ионизированный газ — плазму, непрозрачную для света и любых электромагнитных волн. Начавшаяся в это время рекомбинация (соединение) ядер и электронов, то есть образование нейтральных атомов водорода и гелия, кардинально изменила оптические свойства Вселенной. Она стала прозрачной для большинства электромагнитных волн.

Таким образом, изучая свет и радиоволны, можно увидеть только то, что произошло после рекомбинации, а все то, что случилось раньше, закрыто он нас своеобразной «огненной стеной» ионизованного вещества. Заглянуть гораздо глубже в историю Вселенной можно только в том случае, если мы научимся регистрировать реликтовые нейтрино, для которых горячее вещество стало прозрачным гораздо раньше, и первичные гравитационные волны, для которых материя любой плотности — не преграда, однако это дело будущего, причем далеко не самого близкого.

С момента образования нейтральных атомов наша Вселенная расширилась примерно в 1 000 раз, и излучение эпохи рекомбинации сегодня наблюдается на Земле как реликтовый микроволновый фон с температурой около трех градусов Кельвина. Этот фон, впервые обнаруженный в 1965 году при испытаниях большой радиоантенны, практически одинаков во всех направлениях. По современным данным, реликтовых фотонов в сто миллионов раз больше, чем атомов, поэтому наш мир просто купается в потоках сильно покрасневшего света, излученного еще в самые первые минуты жизни Вселенной.

Классическая топология пространства

На масштабах больших, чем 100 мегапарсек, видимая нами часть Вселенной достаточно однородна. Все плотные сгустки материи — галактики, их скопления и сверхскопления — наблюдаются только на меньших расстояниях. Более того, Вселенная к тому же изотропна, то есть ее свойства одинаковы вдоль любого направления. Эти экспериментальные факты лежат в основе всех классических космологических моделей, в которых предполагаются сферическая симметрия и пространственная однородность распределения вещества.

Классические космологические решения уравнений общей теории относительности Эйнштейна (ОТО), которые были найдены в 1922 году Александром Фридманом, имеют простейшую топологию. Их пространственные сечения напоминают плоскости (для бесконечных решений) или сферы (для ограниченных решений). Но у подобных вселенных, оказывается, существует альтернатива: не имеющая краев и границ, замкнутая сама на себя вселенная конечного объема.

Первые решения, найденные Фридманом, описывали вселенные, заполненные только одним сортом вещества. Различные картины возникали из-за разницы в средней плотности материи: если она превышала критический уровень, получалась замкнутая вселенная с положительной пространственной кривизной, конечными размерами и временем жизни. Ее расширение постепенно замедлялось, останавливалось и сменялось сжатием в точку. Вселенная с плотностью ниже критической имела отрицательную кривизну и бесконечно расширялась, скорость ее раздувания стремилась к некоторой постоянной величине. Эта модель называется открытой. Плоская Вселенная — промежуточный случай с плотностью, точно равной критической, — бесконечна и ее мгновенные пространственные сечения являются плоским евклидовым пространством с нулевой кривизной. Плоская, так же как и открытая, расширяется бесконечно долго, но скорость ее расширения при этом стремится к нулю. Позднее были придуманы более сложные модели, в которых однородная и изотропная вселенная была заполнена многокомпонентным веществом, видоизменяющимся со временем.

Современные наблюдения показывают, что сейчас Вселенная расширяется с ускорением (см. «За горизонтом вселенских событий», № 3, 2006). Такое поведение возможно, если пространство заполнено неким веществом (называемым часто темной энергией) с высоким отрицательным давлением, близким к плотности энергии этого вещества. Это свойство темной энергии приводит к возникновению как бы антигравитации, которая преодолевает на больших масштабах силы притяжения обычной материи. Первая подобная модель (с так называемым лямбдачленом) была предложена еще самим Альбертом Эйнштейном.

Особый режим расширения Вселенной возникает, если давление этой материи не остается постоянным, а возрастает со временем. В этом случае увеличение размеров нарастает настолько быстро, что Вселенная становится бесконечной за конечное время. Такое резкое раздувание пространственных размеров, сопровождаемое разрушением всех материальных объектов, от галактик до элементарных частиц, получило название Большого разрыва (Big Rip).

Все эти модели не предполагают каких-либо особых топологических свойств у Вселенной и представляют ее похожей на наше привычное пространство. Такая картина хорошо согласуется с теми данными, которые астрономы получают с помощью телескопов, регистрирующих инфракрасное, видимое, ультрафиолетовое и рентгеновское излучения. И только данные радионаблюдений, а именно детальное изучение реликтового фона, заставили ученых усомниться в том, что наш мир устроен столь прямолинейно.

Заглянуть за «огненную стену», отделяющую нас от событий первых тысяч лет жизни нашей Вселенной, ученым удастся не скоро. Зато с помощью выводимых в космос лабораторий мы с каждым годом все больше узнаем о том, что происходило после превращения горячей плазмы в теплый газ

Орбитальный радиоприемник

Первые результаты, полученные космической обсерваторией WMAP (Wilkinson Microwave Anisotropy Probe), измерявшей мощность реликтового излучения, были опубликованы в январе 2003 года и содержали так много долгожданной информации, что ее осознание не завершено и сегодня. Обычно для объяснения новых космологических данных используют физику: уравнения состояния вещества, законы расширения и спектры начальных возмущений. Но в этот раз характер обнаруженной угловой неоднородности излучения потребовал совсем другого объяснения — геометрического. Более же точно — топологического.

Основной целью WMAP было построение подробной карты температуры реликтового излучения (или, как его еще называют, микроволнового фона). WMAP — это сверхчувствительный радиоприемник, одновременно регистрирующий сигналы, приходящие из двух почти диаметрально противоположных точек неба. Обсерватория была запущена в июне 2001 года на особо спокойную и «тихую» орбиту, находящуюся в так называемой лагранжевой точке L2 в полутора миллионах километров от Земли. Этот спутник весом 840 кг на самом деле находится на околосолнечной орбите, однако благодаря совместному действию гравитационных полей Земли и Солнца период его обращения в точности равен одному году, и он никуда не улетает от Земли. На такую далекую орбиту спутник был запущен для того, чтобы помехи от земной техногенной активности не мешали приему реликтового радиоизлучения.

На основе полученных космической радиообсерваторией данных удалось с беспрецедентной точностью определить огромное количество космологических параметров. Во-первых, отношение полной плотности Вселенной к критической — 1,02±0,02 (то есть наша Вселенная плоская или замкнутая с очень малой кривизной). Во-вторых, постоянную Хаббла, характеризующую расширение нашего Мира на больших масштабах, — 72±2 км/с/Мпк. В-третьих, возраст Вселенной — 13,4±0,3 млрд. лет и красное смещение, соответствующее времени рекомбинации, — 1088±2 (это среднее значение, толщина границы рекомбинации существенно больше указанной ошибки). Наиболее сенсационным для теоретиков результатом стал угловой спектр возмущений реликтового излучения, точнее, слишком маленькая величина второй и третьей гармоники.

Такой спектр строится путем представления температурной карты в виде суммы различных сферических гармоник (мультиполей). При этом из общей картины возмущений выделяются переменные составляющие, укладывающиеся на сфере целое число раз: квадруполь — 2 раза, октуполь — 3 раза, и так далее. Чем выше номер сферической гармоники, тем более высокочастотные колебания фона она описывает и тем меньше угловой размер соответствующих «пятен». Теоретически число сферических гармоник бесконечно, но для реальной карты наблюдений оно ограничивается тем угловым разрешением, с которым проводились наблюдения.

Для корректного измерения всех сферических гармоник необходима карта всей небесной сферы, и WMAP получает ее верифицированный вариант как раз за год. Первые такие не очень подробные карты были получены в 1992 году в экспериментах «Реликт» и COBE (Cosmic Background Explorer).

Чем бублик похож на кофейную чашку
Есть такой раздел математики — топология, которая исследует свойства тел, сохраняющиеся при любых их деформациях без разрывов и склеек. Представьте себе, что интересующее нас геометрическое тело гибкое и легко деформируется. В этом случае, например, куб или пирамиду можно легко преобразовать в сферу или бутылку, тор («бублик») — в кофейную чашку с ручкой, а вот превратить сферу в чашку с ручкой не удастся, если не разрывать и не склеивать данное легко деформируемое тело. Для того чтобы разделить сферу на два несвязанных кусочка, достаточно провести один замкнутый разрез, а сделать то же самое с тором можно, лишь произведя два разреза. Топологи просто обожают всякого рода экзотические конструкции типа плоского тора, рогатой сферы или бутылки Клейна, которые можно корректно изобразить только в пространстве с вдвое большим числом измерений. Так и нашу трехмерную Вселенную, замкнутую саму на себя, можно себе легко представить, только живя в шестимерном пространстве. На время космические топологи пока не покушаются, оставляя ему возможность просто линейно течь, ни на что не замыкаясь. Так что умения работать в пространстве семи измерений сегодня вполне достаточно для понимания того, как сложно устроена наша додекаэдрическая Вселенная.

Итоговая карта температуры реликтового излучения строится на основе кропотливого анализа карт, отображающих интенсивность радиоизлучения в пяти различных частотных диапазонах

Неожиданное решение

Для большинства сферических гармоник полученные экспериментальные данные совпали с модельными расчетами. Только две гармоники, квадруполь и октуполь, оказались явно ниже ожидаемого теоретиками уровня. Причем вероятность того, что столь большие отклонения могли возникнуть случайно, крайне мала. Подавление квадруполя и октуполя было отмечено еще в данных COBE. Однако карты, полученные в те годы, имели плохое разрешение и большие шумы, поэтому обсуждение этого вопроса было отложено до лучших времен. По какой причине амплитуды двух самых крупномасштабных флуктуаций интенсивности реликтового излучения оказались столь маленькими, вначале было совершенно непонятно. Придумать физический механизм для их подавления пока не удалось, поскольку он должен действовать на масштабе всей наблюдаемой нами Вселенной, делая ее более однородной, и при этом переставать работать на меньших масштабах, позволяя ей флуктуировать сильнее. Наверное, поэтому начали искать альтернативные пути и нашли топологический ответ на возникший вопрос. Математическое решение физической проблемы оказалось удивительно изящным и неожиданным: достаточно было предположить, что Вселенная — замкнутый сам на себя додекаэдр. Тогда подавление низкочастотных гармоник можно объяснить пространственной высокочастотной модуляцией фонового излучения. Этот эффект возникает за счет многократного наблюдения одной и той же области рекомбинирующей плазмы через разные участки замкнутого додекаэдрического пространства. Получается, что низкие гармоники как бы гасят сами себя за счет прохождения радиосигнала через разные грани Вселенной. В такой топологической модели мира события, происходящие вблизи одной из граней додекаэдра, оказываются рядом и с противоположной гранью, поскольку эти области тождественны и на самом деле являются одной и той же частью Вселенной. Из-за этого реликтовый свет, приходящий на Землю с диаметрально противоположных сторон оказывается излученным одной и той же областью первичной плазмы. Это обстоятельство приводит к подавлению низших гармоник спектра реликтового излучения даже во Вселенной лишь немногим большей по размеру горизонта видимых событий.

Карта анизотропии
Упоминающийся в тексте статьи квадруполь не является самой низкой сферической гармоникой. Кроме него существуют монополь (нулевая гармоника) и диполь (первая гармоника). Величина монополя определяется средней температурой реликтового излучения, которая сегодня равняется 2,728 K. После его вычитания из общего фона самой большой оказывается дипольная компонента, показывающая, насколько температура в одной из полусфер окружающего нас пространства выше, чем в другой. Наличие этой компоненты вызвано в основном движением Земли и Млечного Пути относительно реликтового фона. Из-за эффекта Доплера температура в направлении движения повышается, а в противоположном — понижается. Данное обстоятельство позволит определить скорость любого объекта по отношению к реликтовому излучению и таким образом ввести долгожданную абсолютную систему координат, локально покоящуюся по отношению ко всей Вселенной.

Величина дипольной анизотропии, связанная с движением Земли, составляет 3,353*10-3 K. Это соответствует движению Солнца относительно фона реликтового излучения со скоростью около 400 км/с. «Летим» мы при этом в направлении границы созвездий Льва и Чаши, а «улетаем» из созвездия Водолея. Наша Галактика вместе с локальной группой галактик, куда она входит, движется относительно реликта со скоростью около 600 км/с.

Все остальные возмущения (начиная с квадруполя и выше) на карте фона вызваны неоднородностями плотности, температуры и скорости вещества на границе рекомбинации, а также радиоизлучением нашей Галактики. После вычитания дипольной компоненты суммарная амплитуда всех остальных отклонений оказывается всего 18*10-6 K. Для исключения собственного излучения Млечного Пути (в основном сосредоточенного в плоскости галактического экватора) наблюдения микроволнового фона ведутся в пяти частотных полосах в диапазоне от 22,8 ГГц до 93,5 ГГц.

Комбинации с тором

Простейшим телом с более сложной, чем сфера или плоскость, топологией является тор. Представить его может каждый, кто держал в руках бублик. Другую более корректную математическую модель плоского тора демонстрируют экраны некоторых компьютерных игр: это квадрат или прямоугольник, противоположные стороны которого отождествлены, и если движущийся предмет уходит вниз, то появляется сверху; пересекая левую границу экрана, он появляется из-за правой, и наоборот. Такой тор является простейшим примером мира с нетривиальной топологией, который имеет конечный объем и при этом не имеет каких-либо границ.

В трехмерном пространстве аналогичную процедуру можно проделать с кубом. Если отождествить его противоположные грани, то образуется трехмерный тор. Если посмотреть изнутри такого куба на окружающее пространство, то можно увидеть бесконечный мир, состоящий из копий его одной-единственной и уникальной (не повторяющейся) части, объем которой вполне конечен. В таком мире нет каких-либо границ, но есть три выделенных направления, параллельных ребрам исходного куба, вдоль которых наблюдаются периодические ряды исходных предметов. Эта картина очень похожа на то, что можно увидеть внутри кубика с зеркальными стенками. Правда, взглянув на любую из его граней, обитатель такого мира увидит свой затылок, а не лицо, как в земной комнате смеха. Более правильной моделью будет комната, оборудованная 6 телекамерами и 6 плоскими ЖК-мониторами, на которые выводится изображение, снимаемое расположенной напротив кинокамерой. В этой модели видимый мир замыкается сам на себя благодаря выходу в иное телевизионное измерение.

Описанная выше картина подавления низкочастотных гармоник верна, если время, за которое свет пересекает исходный объем, достаточно мало, то есть если размеры начального тела малы по сравнению с космологическими масштабами. Если же размеры доступной для наблюдений части Вселенной (так называемого горизонта Вселенной) оказываются меньше размеров исходного топологического объема, то ситуация не будет ничем отличаться от той, что мы увидим в обычной бесконечной эйнштейновской Вселенной, и никаких аномалий в спектре реликтового излучения наблюдаться не будет.

Максимально возможный пространственный масштаб в таком кубическом мире определяется размерами исходного тела — расстояние между любыми двумя телами не может превышать половины главной диагонали исходного куба. Свет, идущий к нам от границы рекомбинации, может по дороге несколько раз пересечь исходный куб, как бы отражаясь в его зеркальных стенках, из-за этого угловая структура излучения искажается и низкочастотные флуктуации становятся высокочастотными. В результате чем меньше исходный объем, тем сильнее подавление низших крупномасштабных угловых флуктуаций, а значит, изучая реликтовый фон, можно оценить размеры нашей Вселенной.

Трехмерные мозаики

Плоскую топологически сложную трехмерную Вселенную можно построить только на основе кубов, параллелепипедов и шестигранных призм. В случае искривленного пространства такими свойствами обладает более широкий класс фигур. При этом наиболее хорошо полученные в эксперименте WMAP угловые спектры согласуются с моделью Вселенной, имеющей форму додекаэдра. Этот правильный многогранник, имеющий 12 пятиугольных граней, напоминает футбольный мячик, сшитый из пятиугольных лоскутков. Оказывается, что в пространстве с небольшой положительной кривизной правильными додекаэдрами можно без дыр и взаимных пересечений заполнить все пространство. При определенном соотношении между размером додекаэдра и кривизной для этого надо 120 сферических додекаэдров. Более того, эту сложную структуру из сотни «мячиков» можно свести к топологически эквивалентной, состоящей всего из одного-единственного додекаэдра, у которого отождествлены повернутые на 180 градусов противоположные грани.

Вселенная, образованная из такого додекаэдра, обладает рядом интересных свойств: в ней нет выделенных направлений, и она лучше большинства других моделей описывает величину низших угловых гармоник реликтового фона. Такая картина возникает только в замкнутом мире с отношением действительной плотности вещества к критической 1,013, что попадает в интервал значений, допустимых сегодняшними наблюдениями (1,02±0,02).

Для рядового жителя Земли все эти топологические хитросплетения на первый взгляд не имеют особого значения. А вот для физиков и философов — совсем другое дело. Как для мировоззрения в целом, так и для единой теории, объясняющей строение нашего мира, эта гипотеза представляет большой интерес. Поэтому, обнаружив аномалии в спектре реликта, ученые стали искать другие факты, способные подтвердить или опровергнуть предложенную топологическую теорию.

Звучащая плазма
На спектре флуктуаций реликтового фона красной линией обозначены предсказания теоретической модели. Серый коридор вокруг нее — допустимые отклонения, а черные точки — результаты наблюдений. Большая часть данных получена в эксперименте WMAP, и только для самых высоких гармоник добавлены результаты исследований CBI (баллонные) и ACBAR (наземные антарктические). На нормированном графике углового спектра флуктуаций реликтового излучения видно несколько максимумов. Это так называемые «акустические пики», или «Сахаровские осцилляции». Их существование было теоретически предсказано Андреем Сахаровым. Эти пики обусловлены эффектом Доплера и вызваны движением плазмы в момент рекомбинации. Максимальная амплитуда колебаний приходится на размер причинно-связанной области (звукового горизонта) в момент рекомбинации. На меньших масштабах плазменные колебания были ослаблены фотонной вязкостью, а на больших — возмущения не зависели друг от друга и не были сфазированы. Поэтому максимум флуктуаций, наблюдаемых в современную эпоху, приходится на углы, под которыми сегодня виден звуковой горизонт, то есть область первичной плазмы, жившая единой жизнью в момент рекомбинации. Точное положение максимума зависит от отношения полной плотности Вселенной к критической. Наблюдения показывают, что первый, самый высокий пик расположен примерно на 200-й гармонике, что по теории с высокой точностью соответствует плоской Евклидовой Вселенной.

Очень много информации о космологических параметрах содержится во втором и последующих акустических пиках. Само их существование отражает факт «сфазированности» акустических колебаний в плазме в эпоху рекомбинации. Если бы такой связи не было, то наблюдался бы только первый пик, а флуктуации на всех меньших масштабах были бы равновероятными. Но для того чтобы подобная причинная связь колебаний в разных масштабах могла возникнуть, эти (очень сильно удаленные друг от друга) области должны были иметь возможность взаимодействовать друг с другом. Именно такая ситуация естественным образом возникает в модели инфляционной Вселенной, а уверенное обнаружение второго и следующих пиков в угловом спектре флуктуаций реликтового излучения является одним из наиболее весомых подтверждений этого сценария.

Наблюдения реликтового излучения велись в области, близкой к максимуму теплового спектра. Для температуры 3K он находится на длине волны радиоизлучения 1мм. WMAP вел свои наблюдения на чуть более длинных волнах: от 3 мм до 1,5 см. Этот диапазон достаточно близок к максимуму, и в нем ниже шумы от звезд нашей Галактики.

Многогранный мир

В додекаэдральной модели горизонт событий и лежащая очень близко к нему граница рекомбинации пересекают каждую из 12 граней додекаэдра. Пересечение границы рекомбинации и исходного многогранника образуют на карте микроволнового фона 6 пар кругов, расположенных в противоположных точках небесной сферы. Угловой диаметр этих кругов — 70 градусов. Эти круги лежат на противоположных гранях исходного додекаэдра, то есть они геометрически и физически совпадают. Вследствие этого распределение флуктуаций реликтового излучения вдоль каждой пары кругов должно совпадать (с учетом поворота на 180 градусов). На основе имеющихся данных такие круги пока что не были обнаружены.

Но это явление, как оказалось, имеет более сложный характер. Круги будут одинаковыми и симметричными только для наблюдателя, неподвижного относительно реликтового фона. Земля же движется относительно него с достаточно высокой скоростью, из-за чего в фоновом излучении появляется существенная дипольная компонента. В этом случае круги превращаются в эллипсы, меняются их размеры, расположение на небе и среднее значение температуры вдоль круга. Обнаружить тождественные круги при наличии подобных искажений становится гораздо труднее, и точности имеющихся сегодня данных становится недостаточно — нужны новые наблюдения, которые помогут разобраться с тем, есть они или их все же нет.

Многосвязная инфляция

Пожалуй, самая серьезная проблема всех топологически сложных космологических моделей, а их возникло уже немалое количество, имеет в основном теоретический характер. Сегодня стандартным считается инфляционный сценарий эволюции Вселенной. Он был предложен для объяснения высокой однородности и изотропности наблюдаемой Вселенной. Согласно ему вначале родившаяся Вселенная была достаточно неоднородной. Затем в процессе инфляции, когда Вселенная расширялась по близкому к экспоненте закону, ее изначальные размеры возросли на много порядков. Сегодня мы видим только малую часть Большой Вселенной, в которой по-прежнему остались неоднородности. Правда, они имеют столь большую пространственную протяженность, что внутри доступной нам области незаметны. Инфляционный сценарий пока является лучше всего разработанной космологической теорией.

Для многосвязной вселенной такая последовательность событий не подходит. В ней доступна для наблюдения вся ее уникальная часть и некоторые из ее ближайших копий. В таком случае структуры или процессы, описываемые масштабами, много большими наблюдаемого горизонта, существовать не могут.

Направления, в которых придется развивать космологию, если многосвязность нашей Вселенной подтвердится, уже ясны: это безинфляционные модели и так называемые модели со слабой инфляцией, в которых размеры вселенной за время инфляции возрастают всего в несколько раз (или десятков раз). Таких моделей пока нет, и ученые, стараясь сохранить привычную картину мира, активно ищут огрехи в результатах, полученных с помощью космического радиотелескопа.

Артефакты обработки

Одна из групп, которая вела самостоятельные исследования данных WMAP, обратила внимание на то, что квадрупольная и октупольная составляющие реликтового излучения имеют близкую друг к другу ориентацию и лежат в плоскости, почти совпадающей с галактическим экватором. Вывод этой группы: произошла ошибка при вычитании фона Галактики из данных наблюдений микроволнового фона и реальная величина гармоник совсем другая.

Наблюдения WMAP велись на 5 различных частотах специально для того, чтобы правильно разделить космологический и локальный фон. И основная команда WMAP считает, что обработка наблюдений была проведена корректно, и отвергает предложенное объяснение.

Имеющиеся космологические данные, опубликованные еще в начале 2003 года, были получены после обработки результатов только первого года наблюдений WMAP. Для проверки предложенных гипотез, как обычно, требуется повышение точности. К началу 2006 года WMAP ведет непрерывные наблюдения уже четыре года, этого должно хватить для повышения точности вдвое, но эти данные все еще не опубликованы. Нужно немного подождать, и, возможно, наши предположения о додекаэдрической топологии Вселенной примут вполне доказательный характер.

Михаил Прохоров, доктор физико-математических наук

Не пытайтесь стереть прошлое. Оно формирует вас сегодняшнего и помогает вам стать тем, кем вы будете завтра.

Зиад К. Абдельнуар


Вселенная даже больше, чем мы с вами, сформирована условиями, существовавшими во время её рождения. Но какую же форму она приняла? Я выбрал вопрос читателя Тома Берри, который спрашивает:
Я так понимаю, что у вселенной форма седла. Интересно, почему в момент Большого взрыва вся материя не разлетелась равномерно во все стороны и не придала вселенной шарообразную форму?

Начнём с того, что уберём одно измерение, и поговорим о том, что формирует двумерную поверхность. Вы, наверно, представите себе плоскость – типа листа бумаги. Её можно скатать в цилиндр, и хотя поверхность окажется самосвязанной – с одной стороны можно перейти на другую, это всё равно будет плоская поверхность.

Что это значит? Например, можно нарисовать треугольник и сложить размеры внутренних углов. Если мы получим 180 градусов, то поверхность – плоская. Если нарисовать две параллельные линии, они останутся такими на всём протяжении.

Но это лишь один из вариантов.

Поверхность сферы – двумерная, но не плоская. Любая линия начинает закругляться, и если вы сложите углы треугольника, вы получите величину больше, чем 180 градусов. Нарисовав параллельные линии (линии, которые начинаются, как параллельные), вы увидите, что, в конце концов, они встретятся и пересекутся. Такие поверхности имеют положительную кривизну.

Поверхность седла, с другой стороны, представляет другой тип неплоской двумерной поверхности. Она вогнутая по одному направлению и выпуклая по другому, перпендикулярному, и является поверхностью с отрицательной кривизной. Если вы нарисуете на ней треугольник, то получите сумму углов меньше 180 градусов. Две параллельные линии будут расходится в разные стороны.

Ещё можно представить плоский круглый кусочек бумаги. Если вырезать из него клин и заново его склеить, вы получите поверхность положительной кривизны. Если вставить этот клин в другой такой же кусок, вы получите поверхность отрицательной кривизны, как на картинке.

Двумерную поверхность довольно просто представить из трёхмерного пространства. Но в нашей трёхмерной Вселенной всё обстоит несколько сложнее.

Что до кривизны Вселенной, у нас есть три варианта:

Положительная кривизна, как бы сфера в высших измерениях
- отрицательная, как бы седло в высших измерениях
- нулевая (плоская) – как трёхмерная решётка

Можно было бы подумать, что наличие Большого взрыва предполагает первый, сферический вариант, поскольку Вселенная вроде бы одинакова во всех направлениях - но это не так. Есть очень интересная причина, по которой Вселенная одинаковая во всех направлениях – и она никак не связана с кривизной.

То, что Вселенная одинакова во всех местах (гомогенна) и направлениях (изотропна), доказывает существование Большого взрыва, гипотеза о котором говорит, что всё началось с горячего и плотного однородного состояния, в котором начальные условия и законы природы везде были одинаковы.

С течением времени небольшие отклонения приводят к появлению структур – звёзд, галактик, кластеров, и великих пустот. Но причина однородности вселенной – в том, что всё имело одно и то же начало, а не в кривизне.

Но мы можем померить величину кривизны.

На картинке представлены шаблоны флуктуаций, запечатлённые в фоновом космическом излучении. От того, как работает Вселенная и из чего она состоит, зависят пики флуктуаций – самые горячие и холодные места на конкретных угловых масштабах. Если у Вселенной отрицательная кривизна (седло), Вселенная склоняется к меньшему масштабу, если положительная – к большему.

Причина та же, что мы описывали – как прямые линии ведут себя на этих поверхностях.

Поэтому нам просто необходимо изучить флуктуации фонового космического микроволнового излучения, и мы сможем измерить кривизну наблюдаемой Вселенной.

И что же мы получим?

А получим мы, что величина кривизны, показанная в голубых кружочках, равна примерно 0.5%. Это говорит о том, что кривизна Вселенной неотличима от плоскости.

Она действительно расширялась равномерно во все стороны, но к кривизне это отношения не имеет. Конечно, на гораздо больших, чем мы можем наблюдать, масштабах, кривизна Вселенной может быть ненулевой. Инфляционный процесс, происходивший после Большого взрыва, экспоненциально увеличивает каждый участок Вселенной.

То есть, возможно, что кривизна Вселенной положительная или отрицательная, что она похожа на седло или сферу, что она может быть самосвязанной, и мы сможем выйти с одного конца и попасть на другой. Этого исключать нельзя – но в наблюдаемой части этого нет. И для нас Вселенная неотличима от плоской. Но, как показано на рисунке в части D, можно считать, что ваше пространство плоское, а при этом Вселенная может не быть плоской. Это вывод из той информации, которой мы располагаем.

Представьте себе очень большой мячик. Хотя он "извне" и кажется трехмерным, его поверхность - сфера - двумерна, потому как есть только два независимых направления движения по сфере. Если бы Вы были оченб маленькими и жили бы на поверхности этого шара, то вполне могли бы предположить, что Вы живете вовсе не на сфере, а на большой плоской двумерной поверхности. Но если бы Вы при этом провели точные измерения расстояний на сфере, то поняли бы, что живете не на плоской поверхности, а на поверхности большой сферы (прим. перев. лучше, наверное, провести аналогию с поверхностью земного шара).
Идею кривизны поверхности шара можно применить ко всей Вселенной. Это было огромным прорывом в Эйнштейновской Общей теории относительности . Пространство и время были объединены в единую геометрическую единицу, названную пространством-временем , и это пространство-время обладало геометрией , оно могло быть искривленным , так же, как искривлена поверхность огромного шара.
Когда Вы смотрите на поверхность большого шара как на единую вещь, то ощущаете все пространство сферы целиком. Математики любят поверхность сферы так, чтобы это определение описывало всю сферу целиком, а не только ее часть. Одним из ключевых аспектов описания геометрии пространства-времени состоит в том, что нам необходимо описать все пространство и все время целиком. Это означает, что надо описать "все" и "всегда" "в одном флаконе". Геометрия пространства-времени это геометрия всего пространства плюс все время вместе как одна математическая единица .

Что определяет геометрию пространства-времени?

В основном физики работают следующим образом - они ищут уравнения движения, решения которых наилучшим образом описывают систему, которую физики хотят описать. Уравнение Эйнштейна представляет собой классическое уравнение движения пространства-времени . Классическое оно потому, что квантовые эффекты при его получении не принимались во внимание. И, таким образом, геометрия пространства-времени трактуется как исключительно классическое понятие, лишенное каких-либо квантовых неопределенностей. Именно поэтому она и является наилучшим приближением к точной теории.
Согласно уравнениям Эйнштейна кривизна пространства-времени в данном направлении непосредственно связана с энергией и импульсом всего во всем пространстве-времени, что не является пространством-временем. Иными словами, уравнения Эйнштейна связывают гравитацию с не-гравитацией и геометрию с не-геометрией. Кривизна - это гравитация, а все остальное - электроны и кварки, и которых состоят атомы, из которых, в свою очередь, состоит материя, электромагнитное излучение, каждая частица - переносчик взаимодействия (кроме гравитации) - "живет" в искривленном пространстве-времени и в то же самое время определяет эту кривизну согласно уравнениям Эйнштейна.

Какова геометрия нашего пространства-времени?

Как только что отмечалось, полное описание данного пространства-времени включает не только все пространство , но также и все время . Иными словами, пространство-время включает в себя все события, которые когда-либо происходили и которые когда-либо произойдут.
Правда теперь, если мы будем слишком буквальны в таком понятии, то можем натолкнуться на проблемы, потому, как не сможем учесть все самые малые изменения в распределении плотности энергии и импульса во Вселенной, какие только происходили и еще произойду во Вселенной. Но, к счастью, человеческий разум способен оперировать с такими понятиями, как абстракция и приближение , таким образом, мы может построить абстрактную модель, которая примерно описывает наблюдаемую Вселенную достаточно хорошо на больших масштабах , скажем, на масштабах скоплений галактик.
Но для того, чтобы решить уравнения, этого мало. Необходимо также сделать определенные упрощающие предположения относительно кривизны пространства-времени. Первым предположением, которое мы сделаем, будет предположение о том, что пространство-время может быть аккуратно разделено на пространство и время . Это, правда, не всегда можно сделать, например, в некоторых случаях вращающихся черных дыр, пространство и время "вращаются" вместе и, таким образом, не могут быть аккуратно разделены. Однако не никаких указаний на то, что наша Вселенная может вращается подобным образом. Таким образом, мы вполне можем сделать предположение о том, что пространство-время можно описать как пространство, меняющееся со временем .
Следующим важным предположением, следующим из теории Большого Взрыва, является то, что пространство выглядит одинаково в любом направлении в любой точке . Свойство выглядеть одинаково в любом направлении называется изотропией, а выглядеть одинаково в любой точке - однородностью. Таким образом, мы предполагаем, что наше пространство однородно и изотропно . Космологи называют это предположение максимальной симметрией . Считается, что это достаточно резонное предположение на больших масштабах.
Решая уравнения Эйнштейна для геометрии пространства-времени нашей Вселенной, космологи рассматривают три основных типа энергии, которые могут искривить и искривляют пространство-время:
1. энергия вакуума
2. излучение
3. обычное вещество
Излучение и обычное вещество рассматриваются как однородный газ, заполняющий Вселенную, с некоторым уравнением состояния, связывающим давление с плотностью.
После того, как сделаны предположения об однородности источников энергии и о максимальной симметричности, уравнения Эйнштейна можно свести к двум дифференциальным уравнениям, которые несложно решить, используя простейшие методы вычислений. Из решений мы получаем две вещи: геометрию пространства и то, как размеры пространства меняются со временем .

Открытая, закрытая или плоская?

Если в каждый момент времени пространство в каждой точке выглядит одинаково во всех направлениях, то такое пространство обязано иметь постоянную кривизну . Если же кривизна меняется от точки к точке, то пространство будет выглядеть по-разному из разных точек и в разных направлениях. Следовательно, если пространство максимально симметричное, то кривизна во всех точках должна быть одинакова .
Это требование несколько сужает возможные геометрии до трех: пространство с постоянной положительной, отрицательной и нулевой кривизной (плоское). В случае, когда нет энергии вакуума (лямбда-члена), есть только обычная материя и излучение, кривизна помимо всего также отвечает и на вопрос о времени эволюции:
Положительная кривизна : N-мерным пространством с постоянной положительной кривизной является N-мерная сфера. Космологическая модель, в которой пространство обладает постоянной положительной кривизной называется закрытой космологической моделью. В такой модели пространство расширяется от нулевого объема в момент Большого Взрыва, потом в некоторый момент времени достигает максимального объема и начинает сжиматься до "Большого Схлопывания" (Big Crunch).
Нулевая кривизна : Пространство с нулевой кривизной называется плоским пространством. Такое плоское пространство некомпактно, оно протягивается бесконечно во всех направлениях, точно также протяженно только открытое пространство. Такая Вселенная расширяется бесконечно во времени.
Отрицательная кривизна : N-мерным пространством с постоянной отрицательной кривизной является N-мерная псевдосфера. Единственное, с чем более-менее привычным можно сравнить такой уникальный мир, является гиперболоид, который является двумерной гиперсферой. Пространство с отрицательной кривизной бесконечно по объему. В пространстве с отрицательной кривизной реализуется открытая Вселенная. Она также, как и плоская, расширяется бесконечно во времени.
Что определяет, будет ли Вселенная открытой или закрытой? Для закрытой Вселенной полная плотность энергии должна быть больше плотности энергии, отвечающей плоской Вселенной, которая называется критической плотностью . Положим . Тогда в закрытой Вселенной w больше 1, в плоской Вселенной w=1, а в открытой Вселенной w меньше 1.
Все вышесказанное справедливо лишь в том случае, когда в рассмотрение берутся лишь обычные виды материи - пылевидная и излучение, и пренебрегается энергией вакуума , которая вполне может присутствовать. Плотность энергии вакуума постоянна, также ее называют космологической постоянной .

Откуда появляется темная материя?

Во Вселенной много разного вещества типа звезд или горячего газа или еще чего, что излучает видимый свет или излучение на других длинах волн. И все это можно либо увидеть глазами, или с помощью телескопов, либо какими-нибудь сложными инструментами. Однако это не далеко не все, что есть в нашей Вселенной - за последние два десятилетия астрономы обнаружили свидетельства того, что во Вселенной очень много невидимой материи.
Например, оказалось, что видимой материи в виде звезд и межзвездного газа недостаточно для того, чтобы удерживать галактики гравитационно-связанными. Оценки того, сколько реально необходимо вещества средней галактике для того, чтобы не разлететься на части, привели физиков и астрономов к выводу, о том, что большая часть вещества во Вселенной невидима . Это вещество называют темной материей и оно очень важно для космологии.
Раз во Вселенной есть темная материя, то что она может из себя представлять? Из чего она может быть "сделана" ? Если бы она состояла из кварков, как и обычная материя, то в ранней Вселенной должно было быть произведено сильно больше гелия и дейтерия, чем сейчас есть в нашей Вселенной. Специалисты по физике элементарных частиц придерживаются мнения, что темная материя состоит из суперсимметричных частиц , которые очень тяжелые, но очень слабо взаимодействуют с обычными частицами, которые наблюдаются сейчас на ускорителях.
Видимого вещества во Вселенной, следовательно, значительно меньше, чем необходимо даже для плоской Вселенной. Следовательно, если во Вселенной больше ничего нет, то она обязана быть открытой. Однако хватит ли темной материи для того, чтобы "закрыть" Вселенную? Иными словами, если w B это плотность обычного вещества, а w D - плотность темной материи, то выполняется ли соотношение w B + w D = 1 ? Изучение движений в скоплений галактик говорит о том, что полная плотность составляет порядка 30% от критической, при этом видимое вещество составляет порядка 5%, а темная материя 25%.
Но это еще не конец - у нас остается еще один источник энергии во Вселенной - космологическая постоянная.

Что по поводу космологической постоянной?

Эйнштейну не понравились результаты его собственной работы. Согласно его уравнениям движения, Вселенная, заполненная обычной материей, должна расширяться. Но Эйнштейн хотел такой теории, в которой бы Вселенная всегда оставалась бы одного размера. И для этого он добавил в уравнения член, теперь известный как космологический член , который при добавлении к плотности энергии обычного вещества и излучения не позволял Вселенной никогда расширяться и никогда сжиматься, но вечно оставаться одинаковой.
Однако после того, как Хаббл открыл, что наша Вселенная расширяется, Эйнштейновский космологический член был забыт и "заброшен". Однако, через некоторое время интерес к нему пробудился со стороны релятивистских квантовых теорий, в которых космологическая постоянная появляется естественным образом динамически из квантовых осцилляций виртуальных частиц и античастиц. Это называют квантовым нулевым уровнем энергии и это вполне возможный кандидат на энергию вакуума пространства-времени. Однако в квантовой теории есть свои "проблемы" - как бы не сделать эту энергию вакуума слишком большой, и это одна из причин почему физики исследуют суперсимметричные теории.
Космологическая постоянная может как ускорять, так и замедлять расширение Вселенной, в зависимости от того, положительна она или же отрицательна. И когда космологическая постоянная добавляется в пространство-время в довесок к обычному веществу и излучению, то картина становится значительно запутанней, чем простейшие случаи открытой или закрытой Вселенной, описанные выше.

Ну и каков же ответ?

Практически сразу за Большим Взрывом началась эра доминирования излучения , которая продолжалась первые десять - сто тысяч лет эволюции нашей Вселенной. Сейчас же доминирующими формами материи являются обычное вещество и энергия вакуума. Судя по последним наблюдениям астрономов,
1. Наша Вселенная с хорошей точностью плоская :Космическое микроволновое фоновое излучение это реликт, доставшийся нам со времен, когда Вселенная была горячей и были заполнена горячим фотонным газом. С тех пор, правда, из-за расширения Вселенной эти фотоны охладились, и сейчас их температура составляет 2.73 К. Однако это излучение немного неоднородно, их угловой размер неоднородностей, видимый с нашего нынешнего положения, зависит от пространственной кривизны Вселенной. Так вот, наблюдения анизотропии реликтового излучения свидетельствуют как раз о том, что наша Вселенная плоская .
2.Во Вселенной присутствует космологическая постоянная : Во Вселенной присутствует энергия вакуума, или, по крайней мере, нечто, что действует как энергия вакуума, что приводит к ускоренному расширению Вселенной. Свидетельством ускоренного расширения Вселенной являются данные по красным смещениям далеких сверхновых.
3. Большая часть вещества во Вселенной находится в виде темной материи : Изучение движения галактик приводит к выводу, что обычное вещество в форме звезд, галактик, планет и межзвездного газа составляет лишь малую толику всего вещества во Вселенной.
По состоянию на нынешнюю эпоху


Так что сейчас во Вселенной плотность энергии вакуума более чем в два раза превосходит плотность энергии темной материи, и при этом вкладом барионной видимой материи можно просто пренебречь. Так что наша плоская Вселенная должна расширяться вечно.

<< Сколько лет нашей Вселенной? | Оглавление | Тур по истории Вселенной >>


Знаете ли вы о том, что наблюдаемая нами Вселенная имеет довольно определённые границы? Мы привыкли ассоциировать Вселенную с чем-то бесконечным и непостижимым. Однако современная наука на вопрос о «бесконечности» Вселенной предлагает совсем другой ответ на столь «очевидный» вопрос.

Согласно современным представлениям, размер наблюдаемой Вселенной составляет примерно 45,7 миллиардов световых лет (или 14,6 гигапарсек). Но что означают эти цифры?

Первый вопрос, который приходит в голову обычному человеку – как Вселенная вообще не может быть бесконечной? Казалось бы, бесспорным является то, что вместилище всего сущего вокруг нас не должно иметь границ. Если эти границы и существуют, то что они вообще собой представляют?

Допустим, какой-нибудь астронавт долетел до границ Вселенной. Что он увидит перед собой? Твёрдую стену? Огненный барьер? А что за ней – пустота? Другая Вселенная? Но разве пустота или другая Вселенная могут означать, что мы на границе мироздания? Ведь это не означает, что там находится «ничего». Пустота и другая Вселенная – это тоже «что-то». А ведь Вселенная – это то, что содержит абсолютно всё «что-то».

Мы приходим к абсолютному противоречию. Получается, граница Вселенной должна скрывать от нас что-то, чего не должно быть. Или граница Вселенной должна отгораживать «всё» от «чего-то», но ведь это «что-то» должно быть также частью «всего». В общем, полный абсурд. Тогда как учёные могут заявлять о граничном размере, массе и даже возрасте нашей Вселенной? Эти значения хоть и невообразимо велики, но всё же конечны. Наука спорит с очевидным? Чтобы разобраться с этим, давайте для начала проследим, как люди пришли к современному понимаю Вселенной.

Расширяя границы

Человек с незапамятных времён интересовался тем, что представляет собой окружающий их мир. Можно не приводить примеры о трёх китах и прочие попытки древних объяснить мироздание. Как правило, в конечном итоге все сводилось к тому, что основой всего сущего является земная твердь. Даже во времена античности и средневековья, когда астрономы имели обширные познания в закономерностях движения планет по «неподвижной» небесной сфере, Земля оставалась центром Вселенной.

Естественно, ещё в Древней Греции существовали те, кто считал то, что Земля вращается вокруг Солнца. Были те, кто говорил о множестве миров и бесконечности Вселенной. Но конструктивные обоснования этим теориям возникли только на рубеже научной революции.

В 16 веке польский астроном Николай Коперник совершил первый серьёзный прорыв в познании Вселенной. Он твёрдо доказал, что Земля является лишь одной из планет, обращающихся вокруг Солнца. Такая система значительно упрощала объяснение столь сложного и запутанного движения планет по небесной сфере. В случае неподвижной Земли астрономам приходилось выдумывать всевозможные хитроумные теории, объясняющие такое поведение планет. С другой стороны, если Землю принять подвижной, то объяснение столь замысловатым движениям приходит, само собой. Так в астрономии укрепилась новая парадигма под названием «гелиоцентризм».

Множество Солнц

Однако даже после этого астрономы продолжали ограничивать Вселенную «сферой неподвижных звёзд». Вплоть до 19 века им не удавалось оценить расстояние до светил. Несколько веков астрономы безрезультатно пытались обнаружить отклонения положения звёзд относительно движения Земли по орбите (годичные параллаксы). Инструменты тех времён не позволяли проводить столь точные измерения.

Наконец, в 1837 году русско-немецкий астроном Василий Струве измерил параллакс . Это ознаменовало новый шаг в понимании масштабов космоса. Теперь учёные могли смело говорить о том, что звезды являют собой далекие подобия Солнца. И наше светило отныне не центр всего, а равноправный «житель» бескрайнего звёздного скопления.

Астрономы ещё больше приблизились к пониманию масштабов Вселенной, ведь расстояния до звёзд оказались воистину чудовищными. Даже размеры орбит планет казались по сравнению с этим чем-то ничтожным. Дальше нужно было понять, каким образом звёзды сосредоточены во .

Множество Млечных Путей

Известный философ Иммануил Кант ещё в 1755 предвосхитил основы современного понимания крупномасштабной структуры Вселенной. Он выдвинул гипотезу о том, что Млечный Путь является огромным вращающимся звёздным скоплением. В свою очередь, многие наблюдаемые туманности также являются более удалёнными «млечными путями» — галактиками. Не смотря на это, вплоть до 20 века астрономы придерживались того, что все туманности являются источниками звёздообразования и входят в состав Млечного Пути.

Ситуация изменилась, когда астрономы научились измерять расстояния между галактиками с помощью . Абсолютная светимость звёзд такого типа лежит в строгой зависимости от периода их переменности. Сравнивая их абсолютную светимость с видимой, можно с высокой точностью определить расстояние до них. Этот метод был разработан в начале 20 века Эйнаром Герцшрунгом и Харлоу Шелпи. Благодаря ему советский астроном Эрнст Эпик в 1922 году определил расстояние до Андромеды, которое оказалось на порядок больше размера Млечного Пути.

Эдвин Хаббл продолжил начинание Эпика. Измеряя яркости цефеид в других галактиках, он измерил расстояние до них и сопоставил его с красным смещением в их спектрах. Так в 1929 году он разработал свой знаменитый закон. Его работа окончательно опровергла укрепившееся мнение о том, что Млечный Путь является краем Вселенной. Теперь он был одной из множества галактик, которые ещё когда-то считали его составной частью. Гипотеза Канта подтвердилась почти через два столетия после её разработки.

В дальнейшем, открытая Хабблом связь расстояния галактики от наблюдателя относительно скорости её удаления от него, позволило составить полноценную картину крупномасштабной структуры Вселенной. Оказалось, галактики были лишь её ничтожной частью. Они связывались в скопления, скопления в сверхскопления. В свою очередь, сверхскопления складываются в самые большие из известных структур во Вселенной – нити и стены. Эти структуры, соседствуя с огромными сверхпустотами () и составляют крупномасштабную структуру, известной на данный момент, Вселенной.

Очевидная бесконечность

Из вышесказанного следует то, что всего за несколько веков наука поэтапно перепорхнула от геоцентризма к современному пониманию Вселенной. Однако это не даёт ответа, почему мы ограничиваем Вселенную в наши дни. Ведь до сих пор речь шла лишь о масштабах космоса, а не о самой его природе.

Первым, кто решился обосновать бесконечность Вселенной, был Исаак Ньютон. Открыв закон всемирного тяготения, он полагал, что будь пространство конечно, все её тела рано или поздно сольются в единое целое. До него мысль о бесконечности Вселенной если кто-то и высказывал, то исключительно в философском ключе. Без всяких на то научных обоснований. Примером тому является Джордано Бруно. К слову, он подобно Канту, на много столетий опередил науку. Он первым заявил о том, что звёзды являются далёкими солнцами, и вокруг них тоже вращаются планеты.

Казалось бы, сам факт бесконечности довольно обоснован и очевиден, но переломные тенденции науки 20 века пошатнули эту «истину».

Стационарная Вселенная

Первый существенный шаг на пути к разработке современной модели Вселенной совершил Альберт Эйнштейн. Свою модель стационарной Вселенной знаменитый физик ввёл в 1917 году. Эта модель была основана на общей теории относительности, разработанной им же годом ранее. Согласно его модели, Вселенная является бесконечной во времени и конечной в пространстве. Но ведь, как отмечалось ранее, согласно Ньютону Вселенная с конечным размером должна сколлапсироваться. Для этого Эйнштейн ввёл космологическую постоянную, которая компенсировала гравитационное притяжение далёких объектов.

Как бы это парадоксально не звучало, саму конечность Вселенной Эйнштейн ничем не ограничивал. По его мнению, Вселенная представляет собой замкнутую оболочку гиперсферы. Аналогией служит поверхность обычной трёхмерной сферы, к примеру – глобуса или Земли. Сколько бы путешественник ни путешествовал по Земле, он никогда не достигнет её края. Однако это вовсе не означает, что Земля бесконечна. Путешественник просто-напросто будет возвращаться к тому месту, откуда начал свой путь.

На поверхности гиперсферы

Точно также космический странник, преодолевая Вселенную Эйнштейна на звездолёте, может вернуться обратно на Землю. Только на этот раз странник будет двигаться не по двумерной поверхности сферы, а по трёхмерной поверхности гиперсферы. Это означает, что Вселенная имеет конечный объём, а значит и конечное число звёзд и массу. Однако ни границ, ни какого-либо центра у Вселенной не существует.

К таким выводам Эйнштейн пришёл, связав в своей знаменитой теории пространство, время и гравитацию. До него эти понятия считались обособленными, отчего и пространство Вселенной было сугубо евклидовым. Эйнштейн доказал, что само тяготение является искривлением пространства-времени. Это в корне меняло ранние представления о природе Вселенной, основанной на классической ньютоновской механике и евклидовой геометрии.

Расширяющаяся Вселенная

Даже сам первооткрыватель «новой Вселенной» не был чужд заблуждений. Эйнштейн хоть и ограничил Вселенную в пространстве, он продолжал считать её статичной. Согласно его модели, Вселенная была и остаётся вечной, и её размер всегда остаётся неизменным. В 1922 году советский физик Александр Фридман существенно дополнил эту модель. Согласно его расчётам, Вселенная вовсе не статична. Она может расширяться или сжиматься со временем. Примечательно то, Фридман пришёл к такой модели, основываясь на всё той же теории относительности. Он сумел более корректно применить эту теорию, минуя космологическую постоянную.

Альберт Эйнштейн не сразу принял такую «поправку». На помощь этой новой модели пришло, упомянутое ранее открытие Хаббла. Разбегание галактик бесспорно доказывало факт расширения Вселенной. Так Эйнштейну пришлось признать свою ошибку. Теперь Вселенная имела определённый возраст, который строго зависит от постоянной Хаббла, характеризующей скорость её расширения.

Дальнейшее развитие космологии

По мере того, как учёные пытались решить этот вопрос, были открыты многие другие важнейшие составляющие Вселенной и разработаны различные её модели. Так в 1948 году Георгий Гамов ввёл гипотезу «о горячей Вселенной», которая в последствие превратится в теорию большого взрыва. Открытие в 1965 году подтвердило его догадки. Теперь астрономы могли наблюдать свет, дошедший с того момента, когда Вселенная стала прозрачна.

Тёмная материя, предсказанная в 1932 году Фрицом Цвикки, получила своё подтверждение в 1975 году. Тёмная материя фактически объясняет само существование галактик, галактических скоплений и самой Вселенской структуры в целом. Так учёные узнали, что большая часть массы Вселенной и вовсе невидима.

Наконец, в 1998 в ходе исследования расстояния до было открыто, что Вселенная расширяется с ускорением. Этот очередной поворотный момент в науке породил современное понимание о природе Вселенной. Введённый Эйнштейном и опровергнутый Фридманом космологический коэффициент снова нашёл своё место в модели Вселенной. Наличие космологического коэффициента (космологической постоянной) объясняет её ускоренное расширение. Для объяснения наличия космологической постоянной было введено понятия – гипотетическое поле, содержащее большую часть массы Вселенной.

Современное представление о размере наблюдаемой Вселенной

Современная модель Вселенной также называется ΛCDM-моделью. Буква «Λ» означает присутствие космологической постоянной, объясняющей ускоренное расширение Вселенной. «CDM» означает то, что Вселенная заполнена холодной тёмной материей. Последние исследования говорят о том, что постоянная Хаббла составляет около 71 (км/с)/Мпк, что соответствует возрасту Вселенной 13,75 млрд. лет. Зная возраст Вселенной, можно оценить размер её наблюдаемой области.

Согласно теории относительности информация о каком-либо объекте не может достигнуть наблюдателя со скоростью большей, чем скорость света (299792458 м/c). Получается, наблюдатель видит не просто объект, а его прошлое. Чем дальше находится от него объект, тем в более далёкое прошлое он смотрит. К примеру, глядя на Луну, мы видим такой, какой он была чуть более секунды назад, Солнце – более восьми минут назад, ближайшие звёзды – годы, галактики – миллионы лет назад и т.д. В стационарной модели Эйнштейна Вселенная не имеет ограничения по возрасту, а значит и её наблюдаемая область также ничем не ограничена. Наблюдатель, вооружаясь всё более совершенными астрономическими приборами, будет наблюдать всё более далёкие и древние объекты.

Другую картину мы имеем с современной моделью Вселенной. Согласно ей Вселенная имеет возраст, а значит и предел наблюдения. То есть, с момента рождения Вселенной никакой фотон не успел бы пройти расстояние большее, чем 13,75 млрд световых лет. Получается, можно заявить о том, что наблюдаемая Вселенная ограничена от наблюдателя шарообразной областью радиусом 13,75 млрд. световых лет. Однако, это не совсем так. Не стоит забывать и о расширении пространства Вселенной. Пока фотон достигнет наблюдателя, объект, который его испустил, будет от нас уже в 45,7 миллиардах св. лет. Этот размер является горизонтом частиц, он и является границей наблюдаемой Вселенной.

За горизонтом

Итак, размер наблюдаемой Вселенной делится на два типа. Видимый размер, называемый также радиусом Хаббла (13,75 млрд. световых лет). И реальный размер, называемый горизонтом частиц (45,7 млрд. св. лет). Принципиально то, что оба эти горизонта совсем не характеризуют реальный размер Вселенной. Во-первых, они зависят от положения наблюдателя в пространстве. Во-вторых, они изменяются со временем. В случае ΛCDM-модели горизонт частиц расширяется со скоростью большей, чем горизонт Хаббла. Вопрос на то, сменится ли такая тенденция в дальнейшем, современная наука ответа не даёт. Но если предположить, что Вселенная продолжит расширяться с ускорением, то все те объекты, которые мы видим сейчас рано или поздно исчезнут из нашего «поля зрения».

На данный момент самым далёким светом, наблюдаемым астрономами, является реликтовое излучение. Вглядываясь в него, учёные видят Вселенную такой, какой она была через 380 тысяч лет после Большого Взрыва. В этот момент Вселенная остыла настолько, что смогла испускать свободные фотоны, которые и улавливают в наши дни с помощью радиотелескопов. В те времена во Вселенной не было ни звёзд, ни галактик, а лишь сплошное облако из водорода, гелия и ничтожного количества других элементов. Из неоднородностей, наблюдаемых в этом облаке, в последствие сформируются галактические скопления. Получается, именно те объекты, которые сформируются из неоднородностей реликтового излучения, расположены ближе всего к горизонту частиц.

Истинные границы

То, имеет ли Вселенная истинные, не наблюдаемые границы, до сих пор остаётся предметом псевдонаучных догадок. Так или иначе, все сходятся на бесконечности Вселенной, но интерпретируют эту бесконечность совсем по-разному. Одни считают Вселенную многомерной, где наша «местная» трёхмерная Вселенная является лишь одним из её слоёв. Другие говорят, что Вселенная фрактальна – а это означает, что наша местная Вселенная может оказаться частицей другой. Не стоит забывать и о различных моделях Мультивселенной с её закрытыми, открытыми, параллельными Вселенными, червоточинами. И ещё много-много различных версий, число которых ограничено лишь человеческой фантазией.

Но если включить холодный реализм или просто отстраниться от всех этих гипотез, то можно предположить, что наша Вселенная является бесконечным однородным вместилищем всех звёзд и галактик. Причем, в любой очень далёкой точке, будь она в миллиардах гигапарсек от нас, всё условия будут точно такими же. В этой точке будут точно такими же горизонт частиц и сфера Хаббла с таким же реликтовым излучением у их кромки. Вокруг будут такие же звёзды и галактики. Что интересно, это не противоречит расширению Вселенной. Ведь расширяется не просто Вселенная, а само её пространство. То, что в момент большого взрыва Вселенная возникла из одной точки говорит только о том, что бесконечно мелкие (практические нулевые) размеры, что были тогда, сейчас превратились в невообразимо большие. В дальнейшем будем пользоваться именно этой гипотезой для того, что наглядно осознать масштабы наблюдаемой Вселенной.

Наглядное представление

В различных источниках приводятся всевозможные наглядные модели, позволяющие людям осознать масштабы Вселенной. Однако нам мало осознать, насколько велик космос. Важно представлять, каким образом проявляют такие понятия, как горизонт Хаббла и горизонт частиц на самом деле. Для этого давайте поэтапно вообразим свою модель.

Забудем о том, что современная наука не знает о «заграничной» области Вселенной. Отбросив версии о мультивселенных, фрактальной Вселенной и прочих её «разновидностях», представим, что она просто бесконечна. Как отмечалось ранее, это не противоречит расширению её пространства. Разумеется, учтём то, что её сфера Хаббла и сфера частиц соответственно равны 13,75 и 45,7 млрд световых лет.

Масштабы Вселенной

Нажмите кнопку СТАРТ и откройте для себя новый, неизведанный мир!
Для начала попробуем осознать, насколько велики Вселенские масштабы. Если вы путешествовали по нашей планете, то вполне можете представить, насколько для нас велика Земля. Теперь представим нашу планету как гречневую крупицу, которая движется по орбите вокруг арбуза-Солнца размером с половину футбольного поля. В таком случае орбита Нептуна будет соответствовать размеру небольшого города, область – Луне, область границы воздействия Солнца – Марсу. Получается, наша Солнечная Система настолько же больше Земли, насколько Марс больше гречневой крупы! Но это только начало.

Теперь представим, что этой гречневой крупой будет наша система, размер которой примерно равен одному парсеку. Тогда Млечный Путь будет размером с два футбольных стадиона. Однако и этого нам будет не достаточно. Придётся и Млечный Путь уменьшить до сантиметрового размера. Она чем-то будет напоминать завёрнутую в водовороте кофейную пенку посреди кофейно-чёрного межгалактическое пространства. В двадцати сантиметрах от неё расположиться такая же спиральная «кроха» — Туманность Андромеды. Вокруг них будет рой малых галактик нашего Местного Скопления. Видимый же размер нашей Вселенной будет составлять 9,2 километра. Мы подошли к понимаю Вселенских размеров.

Внутри вселенского пузыря

Однако нам мало понять сам масштаб. Важно осознать Вселенную в динамике. Представим себя гигантами, для которых Млечный Путь имеет сантиметровым диаметр. Как отмечалось только что, мы окажемся внутри шара радиусом 4,57 и диаметром 9,24 километров. Представим, что мы способны парить внутри этого шара, путешествовать, преодолевая за секунду целые мегапарсеки. Что мы увидим в том случае, если наша Вселенная будет бесконечна?

Разумеется, пред нами предстанет бесчисленное множество всевозможных галактик. Эллиптические, спиральные, иррегулярные. Некоторые области будут кишить ими, другие – пустовать. Главная особенность будет в том, что визуально все они будут неподвижны, пока неподвижными будем мы. Но стоит нам сделать шаг, как и сами галактики придут в движение. К примеру, если мы будем способны разглядеть в сантиметровом Млечном Пути микроскопическую Солнечную Систему, то сможем пронаблюдать её развитие. Отдалившись от нашей галактики на 600 метров, мы увидим протозвезду Солнце и протопланетный диск в момент формирования. Приближаясь к ней, мы увидим, как появляется Земля, зарождается жизнь и появляется человек. Точно также мы будем видеть, как видоизменяются и перемещаются галактики по мере того, как мы будем удаляться или приближаться к ним.

Следовательно, чем в более далёкие галактики мы будем вглядываться, тем более древними они будут для нас. Так самые далёкие галактики будут расположены от нас дальше 1300 метров, а на рубеже 1380 метров мы будем видеть уже реликтовое излучение. Правда, это расстояние для нас будет мнимым. Однако, по мере того, как будем приближаться к реликтовому излучению, мы будем видеть интересную картину. Естественно, мы будем наблюдать то, как из первоначального облака водорода будут образовываться и развиваться галактики. Когда же мы достигнем одну из этих образовавшихся галактик, то поймем, что преодолели вовсе не 1,375 километров, а все 4,57.

Уменьшая масштабы

В качестве итога мы ещё больше увеличимся в размерах. Теперь мы можем разместить в кулаке целые войды и стены. Так мы окажемся в довольно небольшом пузыре, из которого невозможно выбраться. Мало того, что расстояние до объектов на краю пузыря будет увеличиваться по мере их приближения, так ещё и сам край будет бесконечно смещаться. В этом и заключается вся суть размера наблюдаемой Вселенной.

Какой бы Вселенная не была большой, для наблюдателя она всегда останется ограниченным пузырём. Наблюдатель всегда будет в центре этого пузыря, фактически он и есть его центр. Пытаясь добраться до какого-либо объекта на краю пузыря, наблюдатель будет смещать его центр. По мере приближения к объекту, этот объект всё дальше будет отходить от края пузыря и в тоже время видоизменяться. К примеру – от бесформенного водородного облачка он превратится в полноценную галактику или дальше галактическое скопление. Ко всему прочему, путь до этого объекта будет увеличиваться по мере приближения к нему, так как будет меняться само окружающее пространство. Добравшись до этого объекта, мы лишь сместим его с края пузыря в его центр. На краю Вселенной всё также будет мерцать реликтовое излучение.

Если предположить, что Вселенная и дальше будет расширяться ускоренно, то находясь в центре пузыря и мотая время на миллиарды, триллионы и даже более высокие порядки лет вперёд, мы заметим ещё более интересную картину. Хотя наш пузырь будет также увеличиваться в размерах, его видоизменяющиеся составляющие будут отдаляться от нас ещё быстрее, покидая край этого пузыря, пока каждая частица Вселенной не будет разрозненно блуждать в своём одиноком пузыре без возможности взаимодействовать с другими частицами.

Итак, современная наука не располагает сведениями о том, каковы реальные размеры Вселенной и имеет ли она границы. Но мы точно знаем о том, что наблюдаемая Вселенная имеет видимую и истинную границу, называемую соответственно радиусом Хаббла (13,75 млрд св. лет) и радиусом частиц (45,7 млрд. световых лет). Эти границы полностью зависят от положения наблюдателя в пространстве и расширяются со временем. Если радиус Хаббла расширяется строго со скоростью света, то расширение горизонта частиц носит ускоренный характер. Вопрос о том, будет ли его ускорение горизонта частиц продолжаться дальше и не сменится ли на сжатие, остаётся открытым.

Очередную версию строения Вселенной выдвинул физик Франк Штайнер (Frank Steiner) из университета Ульма (Universität Ulm), повторно проанализировав вместе с коллегами данные, собранные космическим зондом Wilkinson Microwave Anisotropy Probe (WMAP), запущенным некогда для детальной съёмки реликтового излучения.

Однако не спешите говорить о краях Вселенной. Дело в том, что многогранник этот замкнут сам на себя, то есть добравшись до одной из его граней, вы просто попадёте обратно внутрь через противоположную сторону этой многомерной «петли Мёбиуса».

Из этого представления следуют любопытные выводы. Например, что полетев на какой-нибудь «сверхскоростной» ракете по прямой, можно в конце концов вернуться к точке старта, или, если взять «очень большой» телескоп, можно увидеть в разных сторонах космоса одни и те же объекты, только в силу конечности скорости света — на разных стадиях жизни.

Такие наблюдения учёные пробовали проводить, но ничего похожего на «зеркальные отражения» найдено не было. Либо потому, что неверна модель, либо потому, что не хватает «дальнобойности» современной наблюдательной астрономии. Тем не менее обсуждение формы и размера Вселенной всё продолжается.

Теперь же новые дровишки в огонь подбросили Штайнер со товарищи.

Planck весит около двух тонн. Он должен курсировать вокруг точки Лагранжа L2. Поворачиваясь вокруг оси, спутник постепенно отснимет полную карту микроволнового фона с невиданной ранее точностью и чувствительностью (иллюстрации ESA/AOES Medialab и ESA/C. Carreau).

Немецкий физик составил несколько моделей Вселенной и проверил, как в них формируются волны плотности микроволнового фона. Он утверждает, что наибольшее совпадение с наблюдающимся реликтовым излучением даёт Вселенная-пончик, и даже посчитал его диаметр. «Пончик» оказался 56 миллиардов световых лет в поперечнике.

Правда, этот тор — не вполне обычный. Учёные называют его 3-тор (3-torus). Его настоящую форму трудно представить, но исследователи объясняют, как хотя бы попытаться это сделать.

Сначала представьте, как формируется обычный «бублик». Вы берёте лист бумаги и сворачиваете его в трубку, склеивая два противоположных края. Затем вы сворачиваете трубку в тор, склеивая два её противоположных «выхода».

С 3-тором — всё тоже самое, за исключением того, что в качестве исходного ингредиента берётся не лист, а куб, а склеивать нужно не края плоскостей, а каждую пару противоположных граней. Причём склеивать таким образом, что покинув куб через одну из его граней, вы обнаружите, что опять попали внутрь через противоположную его грань.

Несколько специалистов, прокомментировавших работу Штайнера, отметили, что она не доказывает окончательно, что Вселенная — это «многомерный бублик», но лишь говорит, что данная форма — одна из наиболее вероятных. Также некоторые учёные добавляют, что додекаэдр (который часто сравнивают с футбольным мячом, хотя это и некорректно) — всё ещё остаётся «хорошим кандидатом».

Франк на это отвечает просто: окончательный выбор между формами можно будет сделать после более точных измерений реликтового излучения, нежели те, что выполнил WMAP. И такая съёмка вскоре будет проведена европейским спутником Planck , который должен стартовать 31 октября 2008 года.

«С точки зрения философии, мне нравится идея, что Вселенная конечна и в один прекрасный день мы могли бы в полной мере изучить её и узнать о ней всё. Но, поскольку вопросы физики не могут быть решены при помощи философии, я надеюсь, что на них ответит Planck», — говорит Штайнер.

Включайся в дискуссию
Читайте также
Центробувь закрывается. ЦентрОбувь закрыли? Мнение экстрасенсов. Появится ли «ЦентрОбувь» снова
Значение амулета из зуба акулы в защитной магии
Сонник открывать дверь родственникам